Goto

Collaborating Authors

 South Holland



Robot Talk Episode 122 โ€“ Bio-inspired flying robots, with Jane Pauline Ramos Ramirez

Robohub

Claire chatted to Jane Pauline Ramos Ramirez from Delft University of Technology about drones that can move on land and in the air. Jane Pauline Ramos Ramirez is a licensed engineer with a multidisciplinary background in bionics, mechanical, and aerospace engineering, and international research experience. Her life's work is rooted in designing inclusive, socially accessible systems that work in synergy with nature and create meaningful impact in communities. As part of this mission, she has been developing nature-inspired drones that can move on both land and in the air -- blending her appreciation for nature, design, and the mechanics of how things work.


In pictures: Prayers and reflection mark Eid celebrations around the world

BBC News

Muslims around the world have begun celebrating Eid al-Fitr, one of the biggest celebrations in the Islamic calendar. Eid al-Fitr - which means "festival of the breaking of the fast" - is celebrated at the end of Ramadan, a month of fasting for many adults, as well as spiritual reflection and prayer.ReutersHere in Moscow, worshippers are seen preparing for prayer.ReutersHundreds took part in prayers at Tononoka grounds, in Mombasa, KenyaGetty ImagesPrayers were also observed at a stadium in Port Sudan in the east of the countryGetty ImagesLittle children joined adults at the Moskee Essalam in Rotterdam, NetherlandsGetty ImagesGifts are handed out to Muslim children in Lviv, Ukraine, as Russia's war on the country continuesReuters Palestinians in Jabaliya in the northern Gaza Strip pray amidst the rubble of a mosque destroyed in the current war between Israel and HamasGetty ImagesFamilies gather at al-Aqsa mosque in Jerusalem - the third holiest site in IslamReutersA boy yawns during prayers at a stadium in QatarEPAMuslims greet each-other at Martim Moniz Square in Lisbon, PortugalGetty ImagesWomen worshippers gather in Burgess Park, London, for an outdoor prayerEPAThere were also worshippers gathered outside Plebiscito Square in Naples, ItalyReutersSome women took pictures after attending prayers at the Hagia Sophia Grand Mosque in Istanbul, TurkeyGetty ImagesAfghan refugees pray at a mosque on the outskirts of Peshawar, PakistanMiddle EastEuropeEid al-FitrReligionIslamRelated'I was afraid for my life': At the scene of the attack on Palestinian Oscar winner 5 days agoMiddle EastMore8 hrs ago'In Bradford, families spend thousands on new clothes for Eid' Muslims spend large amounts in Bradford's supermarkets, clothes shops and other services before Eid.8 hrs agoEngland1 day ago The tourist has received an award from the city's mayor after restraining a man during a stabbing.1 day agoEurope1 day ago Another 21 people are injured, as a restaurant and several buildings are set ablaze in the city, local officials say.1 day agoWorld1 day ago Town's successful Ramadan lights project expanded A Scunthorpe community group says it has seen an "amazing" response to its lights display.1 day agoLincolnshire1 day ago Bishop says school that changed Easter events'valued' The BBC is not responsible for the content of external sites.


Mapping Hymns and Organizing Concepts in the Rigveda: Quantitatively Connecting the Vedic Suktas

arXiv.org Artificial Intelligence

Accessing and gaining insight into the Rigveda poses a non-trivial challenge due to its extremely ancient Sanskrit language, poetic structure, and large volume of text. By using NLP techniques, this study identified topics and semantic connections of hymns within the Rigveda that were corroborated by seven well-known groupings of hymns. The 1,028 suktas (hymns) from the modern English translation of the Rigveda by Jamison and Brereton were preprocessed and sukta-level embeddings were obtained using, i) a novel adaptation of LSA, presented herein, ii) SBERT, and iii) Doc2Vec embeddings. Following an UMAP dimension reduction of the vectors, the network of suktas was formed using k-nearest neighbours. Then, community detection of topics in the sukta networks was performed with the Louvain, Leiden, and label propagation methods, whose statistical significance of the formed topics were determined using an appropriate null distribution. Only the novel adaptation of LSA using the Leiden method, had detected sukta topic networks that were significant (z = 2.726, p < .01) with a modularity score of 0.944. Of the seven famous sukta groupings analyzed (e.g., creation, funeral, water, etc.) the LSA derived network was successful in all seven cases, while Doc2Vec was not significant and failed to detect the relevant suktas. SBERT detected four of the famous suktas as separate groups, but mistakenly combined three of them into a single mixed group. Also, the SBERT network was not statistically significant.


Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease Progression

Neural Information Processing Systems

Modeling a system's temporal behaviour in reaction to external stimuli is a fundamental problem in many areas. Pure Machine Learning (ML) approaches often fail in the small sample regime and cannot provide actionable insights beyond predictions. A promising modification has been to incorporate expert domain knowledge into ML models. The application we consider is predicting the patient health status and disease progression over time, where a wealth of domain knowledge is available from pharmacology. Pharmacological models describe the dynamics of carefully-chosen medically meaningful variables in terms of systems of Ordinary Differential Equations (ODEs). However, these models only describe a limited collection of variables, and these variables are often not observable in clinical environments. To close this gap, we propose the latent hybridisation model (LHM) that integrates a system of expert-designed ODEs with machine-learned Neural ODEs to fully describe the dynamics of the system and to link the expert and latent variables to observable quantities. We evaluated LHM on synthetic data as well as real-world intensive care data of COVID-19 patients. LHM consistently outperforms previous works, especially when few training samples are available such as at the beginning of the pandemic.


Community detection using fast low-cardinality semidefinite programming

Neural Information Processing Systems

Modularity maximization has been a fundamental tool for understanding the community structure of a network, but the underlying optimization problem is nonconvex and NP-hard to solve. State-of-the-art algorithms like the Louvain or Leiden methods focus on different heuristics to help escape local optima, but they still depend on a greedy step that moves node assignment locally and is prone to getting trapped. In this paper, we propose a new class of low-cardinality algorithm that generalizes the local update to maximize a semidefinite relaxation derived from max-k-cut. This proposed algorithm is scalable, empirically achieves the global semidefinite optimality for small cases, and outperforms the state-of-the-art algorithms in real-world datasets with little additional time cost. From the algorithmic perspective, it also opens a new avenue for scaling-up semidefinite programming when the solutions are sparse instead of low-rank.


Forecasting Empty Container availability for Vehicle Booking System Application

arXiv.org Artificial Intelligence

Container terminals, pivotal nodes in the network of empty container movement, hold significant potential for enhancing operational efficiency within terminal depots through effective collaboration between transporters and terminal operators. This collaboration is crucial for achieving optimization, leading to streamlined operations and reduced congestion, thereby benefiting both parties. Consequently, there is a pressing need to develop the most suitable forecasting approaches to address this challenge. This study focuses on developing and evaluating a data-driven approach for forecasting empty container availability at container terminal depots within a Vehicle Booking System (VBS) framework. It addresses the gap in research concerning optimizing empty container dwell time and aims to enhance operational efficiencies in container terminal operations. Four forecasting models-Naive, ARIMA, Prophet, and LSTM-are comprehensively analyzed for their predictive capabilities, with LSTM emerging as the top performer due to its ability to capture complex time series patterns. The research underscores the significance of selecting appropriate forecasting techniques tailored to the specific requirements of container terminal operations, contributing to improved operational planning and management in maritime logistics.


CAO-RONet: A Robust 4D Radar Odometry with Exploring More Information from Low-Quality Points

arXiv.org Artificial Intelligence

Recently, 4D millimetre-wave radar exhibits more stable perception ability than LiDAR and camera under adverse conditions (e.g. rain and fog). However, low-quality radar points hinder its application, especially the odometry task that requires a dense and accurate matching. To fully explore the potential of 4D radar, we introduce a learning-based odometry framework, enabling robust ego-motion estimation from finite and uncertain geometry information. First, for sparse radar points, we propose a local completion to supplement missing structures and provide denser guideline for aligning two frames. Then, a context-aware association with a hierarchical structure flexibly matches points of different scales aided by feature similarity, and improves local matching consistency through correlation balancing. Finally, we present a window-based optimizer that uses historical priors to establish a coupling state estimation and correct errors of inter-frame matching. The superiority of our algorithm is confirmed on View-of-Delft dataset, achieving around a 50% performance improvement over previous approaches and delivering accuracy on par with LiDAR odometry. Our code will be available.


T3: Multi-modal Tailless Triple-Flapping-Wing Robot for Efficient Aerial and Terrestrial Locomotion

arXiv.org Artificial Intelligence

-- Flapping-wing robots offer great versatility; however, achieving efficient multi-modal locomotion remains challenging. This paper presents the design, modeling, and experimentation of T3, a novel tailless flapping-wing robot with three pairs of independently actuated wings. Inspired by juvenile water striders, T3 incorporates bio-inspired elastic passive legs that effectively transmit vibrations generated during wing flapping, enabling ground movement without additional motors. An SE(3)-based controller ensures precise trajectory tracking and seamless mode transition. T o validate T3's effectiveness, we developed a fully functional prototype and conducted targeted modeling, real-world experiments, and benchmark comparisons. The results demonstrate the robot's and controller's outstanding performance, underscoring the potential of multi-modal flapping-wing technologies for future aerial-ground robotic applications.


Exploring Open-world Continual Learning with Knowns-Unknowns Knowledge Transfer

arXiv.org Artificial Intelligence

--Open-World Continual Learning (OWCL) is a challenging paradigm where models must incrementally learn new knowledge without forgetting while operating under an open-world assumption. This requires handling incomplete training data and recognizing unknown samples during inference. However, existing OWCL methods often treat open detection and continual learning as separate tasks, limiting their ability to integrate open-set detection and incremental classification in OWCL. Moreover, current approaches primarily focus on transferring knowledge from known samples, neglecting the insights derived from unknown/open samples. T o address these limitations, we formalize four distinct OWCL scenarios and conduct comprehensive empirical experiments to explore potential challenges in OWCL. Our findings reveal a significant interplay between the open detection of unknowns and incremental classification of knowns, challenging a widely held assumption that unknown detection and known classification are orthogonal processes. Building on our insights, we propose HoliTrans (Holistic Knowns-Unknowns Knowledge Transfer), a novel OWCL framework that integrates nonlinear random projection (NRP) to create a more linearly separable embedding space and distribution-aware prototypes (DAPs) to construct an adaptive knowledge space. Particularly, our HoliTrans effectively supports knowledge transfer for both known and unknown samples while dynamically updating representations of open samples during OWCL. Extensive experiments across various OWCL scenarios demonstrate that HoliTrans outperforms 22 competitive baselines, bridging the gap between OWCL theory and practice and providing a robust, scalable framework for advancing open-world learning paradigms. Open-World Continual Learning (OWCL) [1], [2] represents a highly practical yet profoundly challenging machine learning paradigm. In OWCL, a model must continually adapt to an unbounded sequence of tasks in a dynamic open environment [3], [4], where novelties might emerge in testing unpredictably over time [5]-[7]. Xin Y ang is the corresponding author (yangxin@swufe.edu.cn). Y ujie Li, Guannan Lai, Xin Y ang and Y onghao Li are with the Southwestern University of Finance and Economics, China (E-mail: liyj1201@gmail.com, Y ujie Li and Marcello Bonsangue are with the Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Netherlands (E-mail: liyj1201@gmail.com, Tianrui Li is with the School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, China (e-mail: trli@swjtu.edu.cn). Manuscript received XX XX, 2025; revised XX XX, 2025.